
C++ Quick Review
By Kamyar Allahverdi

A Sample Program

#include <iostream>
using namespace std;

int main() {
cout << "hello, world!" << endl;
return 0;

}

Variable Declaration

int i; // i is an integer
int & r; // r is a reference to an integer
int * p; // p is a pointer to an integer
int * & q; // q is a reference to a pointer to an integer
int * const c; // c is a const pointer to an integer
int const * d; // d is a pointer to a const integer

Heap vs. Stack

• Stack memory is managed.

• Mostly keeps track of local variables

• Heap is a dynamic memory.

• It’s a bigger memory, for big chunks of data

Heap in C++

• C++ has two operators to allocate dynamic memory

• new/new[]

• delete/delete[]

Heap in C++
• An example:

• Here grades will point to the starting point of a block of memory:

int * grades;
grades = new int [5];

grades

int

Heap in C++
• Problems with dynamic memory?

• Memory Leak: If you lose track of memory allocated.

• Segmentation Fault: If you access illegal memory address

• With C++11 and later, you should avoid new/delete entirely.

Standard Library

• We have a standard library in C++, that helps with managing
memory.

• How?

C++ Classes
• A simple class:

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area (void);
} rect;

C++ Classes
• A simple class:

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area (void);
} rect;

access
specifier

class name

object names

C++ Classes
• Define members outside class declaration:

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}

C++ Classes
class String
{
public:
String(int size)
 :str(NULL),
 size(size)
{
 str = new char[size];
}

~String() //destructor
{
 delete [] str;
};
private:
 char *str;
 int size;
}

• Memory is managed
using Constructors
and Destructors.

• When the class is
deleted, the destructor
is called and no leak
happens.

namespace std

• Fast efficient containers.

• Most usable for us: std::vector

std::vector
int main()
{
 std::vector<std::string> words {"hello", "world!"};
 for(auto s: words)
 std::cout << s << ' ';
 std::cout << std::endl;
 return 0;
}

std::vector

• You can access the underlying array:

• myvector.data()

• If you know the final size of the vector:

• std::vector myvector(1500);

Macros
• They are replaced during compilation.

#include "myheader.hpp"
#define M_PI 3.14159

Header files

• Contains mostly definitions, and global variables

• You shouldn’t include them more than once

• We use macros to prevent this.

Header files
#ifndef MYHEADER_H
#define MYHEADER_H

int time_travel(int when);
// .. rest of header content

#endif // end of include guards

